What will we cover? |
---|
|
I've already spoken about comments in the 'More Sequences' section. However there are some other things we can do with comments and I'll enlarge on those here:
It is good practice to create a file header at the start of each file. This should provide details such as the creation date, author, date of last change, version and a general description of the contents. Often a log of changes. This block will appear as a comment:
#############################
# Module: Spam.py
# Author: A.J.Gauld
# Date: 1999/09/03
# Version: Draft 0.4
'''
This module provides a Spam class which can be
combined with any other type of Food object to create
interesting meal combinations.
'''
###############################
# Log:
# 1999/09/01 AJG - File created
# 1999/09/02 AJG - Fixed bug in pricing strategy
# 1999/09/02 AJG - Did it right this time!
# 1999/09/03 AJG - Added broiling method(cf Change Req #1234)
################################
import sys, string, food
...
Thus when you first open a file it should contain a nice summary of what the file is for, what's changed over time and who did it and when. This is particularly important if you are working on a team project and need to know who to ask about the design or the changes. There are version control tools available that can help automate the production of some of this documentation, but they are outside the scope of this tutorial.
Note that I put the description in between two sets of triple quotes. This is a Python specific trick known as a documentation string that makes the description available to Pythons built-in help function as we'll see shortly.
This technique is often used to isolate a faulty section of code. For example, assume a program reads some data, processes it, prints the output and then saves the results back to the data file. If the results are not what we expect it would be useful to temporarily prevent the (erroneous)data being saved back to the file and thus corrupting it. We could simply delete the relevant code but a less radical approach is simply to convert the lines into comments like so:
data = readData(datafile)
for item in data:
results.append(calculateResult(item))
printResults(results)
######################
# Comment out till bug in calculateResult fixed
# for item in results:
# dataFile.save(item)
######################
print 'Program terminated'
Once the fault has been fixed we can simply delete the comment markers to make the code active once more. Some editing tools, including IDLE, have menu options to comment out a selected block of code, and to uncomment it later.
All languages allow you to create comments to document what a function or module does, but a few, such as Python and Smalltalk, go one stage further and allow you to document the function in a way that the language/environment can use to provide interactive help while programming. In Python this is done using the """documentation""" string style:
class Spam:
"""A meat for combining with other foods
It can be used with other foods to make interesting meals.
It comes with lots of nutrients and can be cooked using many
different techniques"""
def __init__(self):
pass # ie. it does nothing!
print Spam.__doc__
Note: We can access the documentation string by printing the special __doc__ variable. Modules, Functions and classes/methods can all have documentation strings. For example try:
import sys print sys.__doc__
Since Python version 2.2 there is also a help() function within Python that will search for and print out any helpful documentation on a Python symbol. For example to see the help on sys.exit we can do this at the Python prompt:
>>> import sys >>> help (sys.exit) Help on built-in function exit: exit(...) exit([status]) Exit the interpreter by raising SystemExit(status). If the status is omitted or None, it defaults to zero (i.e., success). If the status is numeric, it will be used as the system exit status. If it is another kind of object, it will be printed and the system exit status will be one (i.e., failure). (END)
To get out of help mode hit the letter 'q'(for quit) when you see the (END) marker. If more than one page of help is present you can hit the space bar to page through it. If you are using IDLE, or other IDE, then you likely won't see the (END) marker rather it will simply display all the text and you need to use the scroll bars to go back and read it.
This is one of the most hotly debated topics in programming. It almost seems that every programmer has his/her own idea of the best way to indent code. As it turns out there have been some studies done that show that at least some factors are genuinely important beyond cosmetics - ie they actually help us understand the code better.
The reason for the debate is simple. In most programming languages the indentation is purely cosmetic, an aid to the reader. (In Python it is, in fact, needed and is essential to proper working of the program!) Thus:
< script type="text/vbscript"> For I = 1 TO 10 MsgBox I Next </script>
Is exactly the same as:
< script type="text/vbscript"> For I = 1 TO 10 MsgBox I Next </script>
so far as the VBScript interpreter is concerned. It's just easier for us to read with indentation.
The key point is that indentation should reflect the logical structure of the code thus visually it should follow the flow of the program. To do that it helps if the blocks look like blocks thus:
XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
which reads better than:
XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX XXXXX
because it's clearly all one block. Studies have shown significant improvements in comprehension when indenting reflects the logical block structure. In the small samples we've seen so far it may not seem important but when you start writing programs with hundreds or thousands of lines it will become much more so.
The variable names we have used so far have been fairly meaningless, mainly because they had no meaning but simply illustrated techniques. In general it's much better if your variable names reflect what you want them to represent. For example in our times table exercise we used 'multiplier' as the variable to indicate which table we were printing. That is much more meaningful than simply 'm' - which would have worked just as well and been less typing.
Its a trade-off between comprehensibility and effort. Generally the best choice is to go for short but meaningful names. Too long a name becomes confusing and is difficult to get right consistently(for example I could have used the_table_we_are_printing instead of multiplier but it's far too long and not really much clearer.
While the Python interactive interpreter prompt (>>>) is very
useful for trying out ideas quickly, it loses all you type the
minute you exit. In the longer term we want to be able to write
programs and then run them over and over again. To do this in
Python we create a text file with an extension .py (this
is a convention only, you could use anything you like. But it's a
good idea to stick with convention in my opinion...). You can
then run your programs from an Operating System command prompt
by typing:
$ python spam.py
Where spam.py is the name of your Python program
file and the $ is the operating system prompt.
The other advantage of using files to store the programs is that you can edit mistakes without having to retype the whole fragment or, in IDLE, cursor all the way up past the errors to reselect the code. IDLE supports having a file open for editing and running it from the 'Edit|Run module' menu.
From now on I won't normally be showing the >>> prompt in examples, I'll assume you are creating the programs in a separate file and running them either within IDLE or from a command prompt (my personal favourite).
Note for Windows usersUnder Windows you can set up a file association for files ending .py within Explorer. This will allow you to run Python programs by simply double clicking the file's icon. This should already have been done by the installer. You can check by finding some .py files and trying to run them. If they start (even with a Python error message) it's set up. The problem you will likely run into at this point is that the files will run in a DOS box and then immediately close, so fast you scarcely even see them! There are a couple of options:
|
Note for Unix usersThe first line of a Python script file should contain
the sequence #! followed by the full path of python
on your system. You can find that by typing, at your shell prompt:
|
You VBScript and JavaScript users can ignore the above, you've already been saving your programs as files, it's the only way to get them to work!
Points to remember |
---|
|
Previous  Next  Contents
If you have any questions or feedback on this page
send me mail at:
alan.gauld@yahoo.co.uk